

Silicon Carbide (SiC) and Silicon-on-Insulator (SOI) Electronics for Harsh Environmental Applications

Krishna Shenai, PhD
Professor, Electrical Engineering and Computer Science Dept.
University of Illinois at Chicago

Outline

- Silicon carbide (SiC) high-power hightemperature electronics
 - NASA Glenn Research Center, Cleveland, OH
 - DARPA (Sterling Semiconductor)
 - Infineon and Power Electronics Reliability Group (PERG)
- Silicon-on-insulator (SOI) RF and low-power electronics
 - US Army (PolyFET RF Devices, Allied Signal, Honeywell)
 - Caltech/Jet Propulsion Laboratory (MIT Lincoln Labs, Honeywell)

Bulk versus SOI Technology

Electrical Engineering and Computer Science University of Illinois at Chicago

Bulk

- No "kink" in output current
- Low self-heating

SOI

- Suppressed substrate coupling
- Low capacitance
- Excellent passive components

Reliability Characteristics

- Breakdown voltage
 - SOI has about 25% higher $V_{\rm BDD}$
 - SOI breakdown is softer
- Leakage current
 - SOI typical has lower leakage
 - High leakage here due to unoptimized drain-body diode

DC Characteristics

- SOI has higher saturation current
- SOI current degrades less at elevated temperatures
- SOI shows some negative differential resistance from self-heating

RF Characteristics

- SOI has higher forward gain (S_{21}) at room and elevated temperature
- SOI and bulk have very similar S_{11} : SOI can replace bulk without redesigning input matching networks
- SOI has better gain, especially when DC bias current is high (class A)

Self-Heating

$$V_{\rm DS} = 7.5 \text{ V}, I_{\rm D} = 50 \text{ mA}$$

- SOI shows more pronounced self-heating at DC bias point
- Despite 20°C higher internal temperature, SOI outperforms bulk

Device Comparison

 $V_{DS} = 5 \text{ V}, \ V_{GS} = 0 \text{ V}$

Frequency and Power Ratings

- Mid- to long-range transmission
 - 800 MHz to 2.4 GHz
 - mW to W
 - Wireless handsets, pagers, GPS
- Short-range transmission
 - 2.4 GHz
 - µW to mW
 - Bluetooth, wireless LAN

1G	AMPS	800 MHz, 900 MHz
2G/2.5G	cdmaOne	900 MHz
	GSM	900 MHz, 1.8 GHz, 1.9 GHz
	GSM EDGE, PCS	1.9 GHz
3G	UMTS, W-CDMA	2.1 GHz
Embedded	Bluetooth	2.4 GHz

SOI LDMOS Performance Trends

Electrical Engineering and Computer Science University of Illinois at Chicago

RF DRAIN EFFICIENCY

More efforts towards power IC application than RF power amplifiers

K.Shenai, E. McShane, and S.K. Leong, "Lateral RF SOI Power MOSFETs with fT of 6.9GHz," *IEEE Electron Device Lett.*, vol. 21, no. 10, Oct. 2000 pp. 500-502

Power Delivery Trends

Electrical Engineering and Computer Science University of Illinois at Chicago

Power gain

- Silicon "power" devices limited to LDMOS and CMOS variants
- Bulk and SOI show similar performance
- SiGe competes well with GaAs MESFETs to 2.4 GHz

PAE

- Silicon "power" devices very competitive to 2.1 GHz
- Ordinary CMOS is promising
- SiGe is comparable to GaAs MESFETs

SOI Devices for Radiation Tolerance

Electrical Engineering and Computer Science University of Illinois at Chicago

D e ice	Pa te n	$W_{\rm c}$	$W_{\rm e}$	$W_{ m g}$	r	$W_{ m t}/W_{ m g}$	$R_{ m beff}$
		(µm)	(µm)	(µm)		(%)	(kž)
1	A	8.9	0	10.1	4	11.9	55
2	A	12.9	0	14.1	4	8.51	77
3	A	16.9	0	18.1	4	6.63	99
4	В	0.9	6.8	10.1	8	23.8	37
5	В	4.9	6.8	14.1	8	17.0	39
6	В	8.9	6.8	18.1	8	13.3	50
7	С	0.9	6.8	10.1	8	23.8	37
8	С	0.9	10.8	14.1	8	17.0	57
9	С	0.9	14.8	18.1	8	13.3	78

Enclosed layout transistors

- Gate is a continuous loop
- No oxide edge shared by drain and source
- Body resistance defined by ratio of gate segments

$$R_{\text{b,eff}} = \frac{R_{\text{sh}}}{2} \left(x \frac{W_{\text{c}} + W_{\text{t}}}{L} + (1 - x) \frac{W_{\text{e}} + W_{\text{t}}}{L} \right) \qquad x = \frac{W_{\text{c}} + W_{\text{t}}}{W_{\text{o}}}$$

Physics of Scaling and the Kink Effect

Electrical Engineering and Computer Science University of Illinois at Chicago

Narrow devices

- Kink is proportional to device width (or separation of body ties)
- Charge-sharing effects are suppressed by body ties

Wide devices

- Kink is inversely proportional to device width (or separation of body ties)
- Enhanced charge-sharing reduces C_d and hence ? I_D

$$\Delta I_{\rm D} = \underbrace{\frac{C_{\rm d}}{C_{\rm ox}} g_{\rm m}}_{\text{body transconductance}} \cdot \underbrace{\frac{kT}{q} \log \left(\frac{I_{\rm sub}}{I_0} + 1 \right)}_{\text{internal substrate bias}}$$

Breakdown

- Little sensitivity to body tie geometry
- Device "corners" do not contribute to high electric field

- Widest separation of body ties has most severe chargesharing (lowest C_d)
- Lower C_d causes a more ideal subthreshold slope

$$S = \frac{kT}{q} \ln(10) \left(1 + \frac{C_{\rm d}}{C_{\rm ox}} \right)$$

Output Conductance Flatness

14

Electrical Engineering and Computer Science **University of Illinois** at Chicago

AAA

BBB

Effect of device width

- Kink is suppressed with increasing body resistance
- Kink can be reduced by over 60%

Width scaling per pattern

Effect of body tie pattern

- Body tie pattern plays a role in suppressing kink
- Kink always reduced most using pattern "C" (body ties close to device corners)

Conclusions: SOI

Electrical Engineering and Computer Science University of Illinois at Chicago

Present

- RF SOI has performance competitive with bulk—could be better than bulk with optimization
- Signal-level SOI is very sensitive to body tie position—bulk CMOS models are unsuitable

Future

- Reduce leakage currents
 - Extend lightly-doped drain to BOX interface
- Reduce specific on-resistance
 - Operate device at higher gate overdrive
 - Shrink drawn gate length closer to effective gate length
 - Optimize length of lightly-doped drain extension
- Increase forward gain
 - Increase BOX thickness to reduce further the output capacitance